Research

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thienothiophene Derivatives with Bulky Groups, High Quantum Yield for OLED and Solar Cell Applicaitons:

 

 

 

                            

                                                           

 

                                         Q.Y :0.675 

 

 

 

TT-CN RESİM 3                                                 

                                                

                                       Q.Y : 0.56

 

 

 

Fluorene–Dithienothiophene-S,S-dioxide Copolymers. Fine-Tuning for OLED Applications

Ipek Osken, Ali Senol Gundogan, Emine Tekin, Mehmet S Eroglu, Turan Ozturk, Macromolecules2013, 46, 9202−9210.

 

 

RESİÇÇ

 

 

 

 

 

 

A New Methodology For The Synthesis Of Fused Thienothiophenes:

TT

 

 

Synthesis of New Dithienothiophenes (DTT) Applying 1,8-Diketone Ring Formation Reaction

Due to its interesting electrochemical and optical properties, DTT has been receiving an increasing attention. As such compounds are rich in sulfur, three “S” atoms, they are electron rich species, which make them good electron donor and important building blocks of a wide variety of materials for electronic and optical applications such as electroluminescence, two-photon absorption, exited fluorescence, photochromism, nonlinear optical chromophores, transistors with high mobilities of on/off ratios, conducting polymer and charge-transfer complexes. Easy oxidation of the thiophene sulfur of the middle one acquires the molecule fluorescence property which makes them good candidates for labelling, particularly important for biological systems, and for materials for organic light emitting devices (OLED). We have developed the DTT derivatives given below. Electropolimerization of some of them have been performed.

1. Ozturk, T.; Ertas, E.; Mert, O. Tetrahedron, 2005, 61, 11052. Olcay Mert, Elif Sahin, Erdal Ertas, Turan Ozturk, Engin A. Aydin, Levent Toppare, J. Electroanal. Chem., 2006, 591, 53-58.

3.E. Sezer, F. Turksoy, U. Tunca, T. Ozturk, Electrochemical Acta, 2004, 570, 101-105.

4. E. Ertas, T. Ozturk, Tetrahedron. Lett., 2004, 45, 3405-3407.

5. F. Turksoy, J. D. Wallis, U. Tunca, T. Ozturk, Tetrahedron, 2003, 59, 8012.

6.N. Saygili, R. J. Brown, P. Day, R. Hoelzl, P. Kathirgamanathan, E. R. Mageean, T. Ozturk, M. Pilkington, M. M. B. Qayyum, S. S. Turner, L. Vorwerg, J. D. Wallis, Tetrahedron, 2001, 57, 5015.

7. T. Ozturk, N. Saygili, S. Ozkara, M. Pilkington, C. R. Rice, D. A. Tranter, F. Turksoy, J. D. Wallis, J. Chem. Soc., Perkin Trans. 1, 2001, 407.

8. E. Ertas, T. Ozturk, J. Chem. Soc., Chem. Commun. 2000, 2039.

9. T. Ozturk, F. Turksoy, E. Ertas, Phosphorous, Sulfur, Silicon and Related Elements, 1999, 153-154, 417.

10. G. A. Horley, T. Ozturk, F. Turksoy, J. D. Wallis, J. Chem. Soc., Perkin I, 1998, 3225.

11. F. Leurguin, T. Ozturk, M. Pilkington and J. D. Wallis, J. C. S. Perkin Trans. I., 1997, 3173.

12. T. Ozturk, D. C. Povey and J. D. Wallis, Phosphorus and Sulfur, 1997, 122, 313.

13. T. Ozturk, Tetrahedron Lett., 1996, 37, 2821.

14. T. Ozturk, C. R. Rice, and J. D. Wallis, J. Materials Chem., 1995, 5, 1553.

15. T. Ozturk, D. C. Povey and J. D. Wallis, Tetrahedron, 1994, 50, 11205.

 

Synthesis of New Fluorescent Sensors based on 3-Hydroxyflavone

3-Hydroxyflavones (3HF) 1 are important candidates as fluorescent molecular sensors since they have interesting fluorescent properties, resulting from their excited state intramolecular proton transfer (ESIPT) reaction.1 This property leads to two well-separated, highly intense and solvent-dependent emission bands, the ratio of the intensities of which is strongly sensitive to the polarity and hydrogen bonding perturbations1c in proteins,2 micelles,3 and polymers.4 These bands originate from the normal excited form (N*) and the phototautomer (T*).1a,5 It has been disclosed that the introduction of an electron donor groups to the 4’-position of the 3HF increases the sensitivity of fluorescence spectra of the molecule, which has attracted the interest of research groups as two-band fluorescent dyes with a ratiometric response to different perturbations.6 This resulted in a variety of applications for substituted 3HFs as ion sensors7 and probes in the studies of organized systems such as micelles8 and phospholipid vesicles.3,9 Our group has developed various analogues of 3HF.6d-g,10,

 

1. a) Sengupta, P. K.; Kasha, M. Chem. Phys. Lett. 1979, 68, 382-385; b) Woolfe, G. E.; Thistlewaithe, P. G. J. Am. Chem. Soc. 1981, 103, 6916-6923; c) Chou, P.; McMorrow, D.; Aartsma, T. J.; Kasha, M. J. Phys. Chem. 1984, 88, 4596-4599; d) McMorrow, D.; Kasha, M. J. Am. Chem. Soc. 1983, 105, 5133-5134; e). McMorrow, D.; Kasha, M. J. Phys. Chem. 1984, 88, 2235-2243; f). Strandjord, A. J. G; Barbara, P. F. J. Phys. Chem. 1985, 89, 2355-2361.

2. Sytnik, A.; Gormin, D.; Kasha, M. Proc. Natl. Acad. Sci. USA 1994, 91, 11968-11972.

3. Sarkar, M.; Ray, J. G.; Sengupta, P. K. Spectrochim. Acta A, 1996, 52, 275-278.

4. Dharia, J. R.; Johnson, K. F.; Schlenoff, J. B. Macromolecules, 1994, 27, 5167-5172.

5. Formosinho, J. S.; Arnaut, G. L. J. Photochem. Photobiol. A: Chem. 1993, 75, 21-48.

6. a) Chou, P.-T.; Martinez, M. L.; Clements, J. H. J. Phys. Chem. 1993, 97, 2618-2622; b) Swiney, T. C.; Kelley, F. D. J. Chem. Phys., 1993, 99, 211-221; c) Ormson, S. M.; Brown, R. G.; Vollmer, F.; Rettig, W. J. Photochem. Photobiol. A: Chem. 1994, 81, 65-72; d) Klymchenko, A. S.; Ozturk, T.; Pivovarenko, V. G.; Demchenko, A. P. Can. J. Chem. 2001, 79, 358-363; e) Klymchenko, A. S.; Ozturk, T.; Pivovarenko, V. G.; Demchenko, A. P. Tetrahedron Lett. 2001, 42, 7967-7970; f) Klymchenko, A. S.; Ozturk, T.; Demchenko, A. P. Tetrahedron Lett. 2001, 43, 7079-7082; g) Klymchenko, A. S.; Pivovarenko, V. G.; Ozturk, T.; Demchenko, A. P. New J. Chem. 2003, 27, 1336-1343; h) Klymchenko, A. S.; Demchenko. A. P. Phys. Chem. Chem. Phys. 2003, 5, 461-468.

7. Roshal, A. D.; Grigorovich, A. V.; Doroshenko, A. O.; Pivovarenko, V. G.; Demchenko, A. P. J. Phys. Chem. A, 1998, 102, 5907-5914.

8. a) Pivovarenko, V. G.; Tuganova, A. V.; Klymchenko, A. S.; Demchenko, A. P. Cell. Mol. Biol. Lett. 1997, 2, 355-364; b) Klymchenko, A. S.; Demchenko, A. P. Langmuir, 2002, 18, 5637-5639.

9. a) Bondar, O. P.; Pivovarenko, V. G.; Rowe, E. S. Biochem. Biophys. Acta 1998, 1369, 119-130; b) Duportail, G.; Klymchenko, A. S.; Mely, Y.; Demchenko, A. P. FEBS Lett. 2001, 508, 196-200; c) Duportail, G.; Klymchenko, A. S.; Y. Mely, Y. Demchenko, A. P. J. Fluorescence, 2002, 12, 181-185.

10.Klymchenko, A. S.; Duportail, G.; Ozturk, T.; Pivovarenko, V. G.; Mely, Y.; Demchenko, A. P. Chenistry and Biology 2002, 9, 1199

11. M’Baye, G.; Klymchenko, A. S.; Yushcheno, D. A.; Shvadchak, V. V.; Ozturk, T.; Mely, Y.; Duportail, G. Photochem. Photobiol. Sci., 2007, 6, 71-76